Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Zhi Zhang

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006,
Heilongjiang Province, People's Republic of China

Correspondence e-mail:
zhangwenzhi1968@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
H -atom completeness 95%
Disorder in solvent or counterion
R factor $=0.050$
$w R$ factor $=0.143$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A new manganese(II) complex with the m-aminobenzoate anion: [aqua(3-aminobenzoato-кO)-$\operatorname{bis}\left(1,10-\right.$ phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ manganese(II)] 3-aminobenzoate 4.5-hydrate

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right) \cdot 4.5 \mathrm{H}_{2} \mathrm{O} \quad$ or $\quad\left[\mathrm{Mn}(\text { phen })_{2}(L)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] L \cdot 4.5 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{H} L$ is m-aminobenzoic acid and phen is 1,10 phenanthroline, the central $\mathrm{Mn}^{\mathrm{II}}$ atom is six-coordinated by four N atoms from two distinct phen ligands, one O atom from a carboxylate ligand and one O atom from a water molecule. The L^{-}ions and water molecules are linked through an extended network of hydrogen bonds to form a threedimensional supramolecular structure.

Comment

It is of interest to explore divalent transition metal complexes with biochemical molecules because these complexes show interesting physical-chemical properties, and may find applications in biological systems (Antolini et al., 1982). So far, many studies on the solid-state structures of transition metal complexes with the o-aminobenzoate and p-aminobenzoate ions have been carried out (Boudreau et al., 1983). However, no study related to the m-aminobenzoate ion has been reported. In this paper the crystal structure of a new manganese(II) complex with the m-aminobenzoate ligand, (I), is reported.

(I)

Selected bond lengths and angles for (I) are given in Table 1. Fig. 1 shows the coordination environment of the manganese(II) ion. The manganese(II) ion is six-coordinated by four N atoms from two distinct phen molecules, one carboxylate O atom from an m-aminobenzoate anion and one O atom from a water molecule. The $\mathrm{Mn}-\mathrm{O}$ (carboxylate) distance of 2.114 (2) \AA is significantly shorter than the value found in the polymeric compound $\left[\text { trans }-\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathrm{Li}$ et al.,
\qquad

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
Packing diagram of (I), viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
2004). In (I), in constras to what is observed in the $\operatorname{bis}(o-$ aminobenzoato)copper(II) complex (Lange \& Haendler, 1975), the amine group of the m-aminobenzoate ligand is not coordinated to the manganese(II) ion.

In the crystal packing, the ions are linked by an extended network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to form a three-dimensional supramolecular structure (Fig. 2).

Experimental

m-Aminobenzoic acid ($0.274 \mathrm{~g}, 2 \mathrm{mmol}$) was added with constant stirring to a suspension of $\mathrm{MnCO}_{3}(0.115 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$.

1,10-Phenanthroline ($0.198 \mathrm{~g}, 1 \mathrm{mmol}$) was added to the solution with stirring. Colourless crystals of (I) were obtained from the solution after standing at room temperature for several days (68% yield based on Mn).

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right) \cdot 4.5 \mathrm{H}_{2}$
$M_{r}=786.70$
Triclinic, $P \overline{1}$
$a=12.795$ (3) \AA
$b=12.800$ (3) \AA
$c=13.408$ (3) \AA
$\alpha=102.56$ (3) ${ }^{\circ}$
$\beta=102.00(3)^{\circ}$
$\gamma=111.91$ (3) ${ }^{\circ}$
$V=1884.5(11) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.386 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13600
reflections
$\theta=1.8-27.5^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.42 \times 0.39 \times 0.33 \mathrm{~mm}$

Data collection
Rigaku R-AXIS RAPID diffractometer
ω scan
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.836, T_{\text {max }}=0.878$
13600 measured reflections
8467 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.143$
$S=0.94$
8467 reflections
524 parameters

> 5042 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=27.5^{\circ}$
> $h=-16 \rightarrow 16$
> $k=-15 \rightarrow 16$
> $l=-17 \rightarrow 17$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0833 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
m858
Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{HW} 12 \cdots \mathrm{O} 2$	0.88 (2)	1.88 (2)	2.705 (3)	155 (3)
$\mathrm{O} 1 W-\mathrm{H} W 11 \cdots \mathrm{O} 3$	0.90 (2)	1.88 (2)	2.714 (3)	155 (2)
$\mathrm{O} 2 W-\mathrm{H} W 21 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.92 (2)	1.94 (2)	2.820 (4)	160 (2)
$\mathrm{O} 3 W-\mathrm{HW} 32 \cdots \mathrm{O} 2 \mathrm{~W}$	0.76 (2)	2.29 (3)	2.832 (4)	129 (3)
$\mathrm{O} 4 W-\mathrm{HW} 41 \cdots \mathrm{O} 4^{\text {ii }}$	0.92 (2)	2.01 (3)	2.852 (4)	152 (4)
N5-H5A \cdots O6 $W^{\text {i }}$	0.86	2.25	2.979 (6)	143
$\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {i }}$	0.86	2.26	3.119 (4)	172
$\mathrm{O} 3 W-\mathrm{HW} 31 \cdots \mathrm{O} 4 W^{\text {iii }}$	0.86 (2)	2.03 (2)	2.882 (5)	174 (3)

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x-1, y, z$; (iii) $x, y, z-1$.
Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{Mn} 1$	$2.316(2)$	$\mathrm{N} 4-\mathrm{Mn} 1$	$2.254(2)$
$\mathrm{N} 2-\mathrm{Mn} 1$	$2.270(2)$	$\mathrm{O} 1-\mathrm{Mn} 1$	$2.114(2)$
$\mathrm{N} 3-\mathrm{Mn} 1$	$2.277(2)$	$\mathrm{O} 1 W-\mathrm{Mn} 1$	$2.179(2)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 W$	$89.66(8)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 3$	$73.21(9)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$94.30(9)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$93.98(9)$
$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 4$	$106.31(8)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$90.77(8)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$101.02(9)$	$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 1$	$164.20(8)$
$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 2$	$91.66(8)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$89.40(8)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 2$	$156.46(8)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$72.77(7)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$164.11(8)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 1$	$98.71(8)$
$\mathrm{O} 1 W-\mathrm{Mn} 1-\mathrm{N} 3$	$84.67(8)$		

[^1]$\Delta \rho_{\text {max }}=0.86 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e} \mathrm{A}^{-3}$

[^2]m858

metal-organic papers

H atoms attached to C and N atoms were positioned geometrically and refined as riding atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. Water H atoms bound to atoms $\mathrm{O} 1 W, \mathrm{O} 2 W$, $\mathrm{O} 3 W$ and $\mathrm{O} 5 W$ were located in difference Fourier maps. The positions of these atoms were refined freely, with a fixed isotropic displacement parameter $\left(0.054 \AA^{2}\right)$. One H atom attached to $\mathrm{O} 4 W$ was also located in a difference Fourier map and refined freely. The remaining H atom bound to atom $\mathrm{O} 4 W$, and two H atoms bound to O6W were not located in difference Fourier maps and were not included in the model. During the refinement of (I), atom O6W exhibited very large atomic displacement parameters. The occupancy of this atom was refined using a fixed isotropic displacement parameter and converged to 50%. The occupancy was then fixed and anisotropic displacement parameters used for the O atom.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);
molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXTL-Plus.

The author thanks Qiqihar University for supporting this work.

References

Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. \& Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.
Boudreau, S. M., Boudreau, R. A. \& Haendler, H. M. (1983). J. Solid State Chem. 49, 379-384.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lange, B. A. \& Haendler, H. M. (1975). J. Solid State Chem. 15, 325-328.
Li, X., Cao, R., Sun, Y. Q., Shi, Q., Yuan, D. Q., Sun, A. F., Bi, W. H. \& Hong, M. C. (2004). Cryst. Growth Des. 4, 255-261.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: .

[^2]: \qquad

